2 resultados para CHRONIC LUNG INFECTION

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective The protein Hwp1, expressed on the pathogenic phase of Candida albicans, presents sequence analogy with the gluten protein gliadin and is also a substrate for transglutaminase. This had led to the suggestion that C. albicans infection (CI) may be a triggering factor for Celiac disease (CeD) onset. We investigated cross-immune reactivity between CeD and CI. Methods Serum IgG levels against recombinant Hwp1 and serological markers of CeD were measured in 87 CeD patients, 41 CI patients, and 98 healthy controls (HC). IgA and IgG were also measured in 20 individuals from each of these groups using microchips sensitized with 38 peptides designed from the N-terminal of Hwp1. Results CI and CeD patients had higher levels of anti-Hwp1 (p= 0.0005 and p= 0.004) and anti-gliadin (p= 0.002 and p= 0.0009) antibodies than HC but there was no significant difference between CeD and CI patients. CeD and CI patients had higher levels of anti-transglutaminase IgA than HC (p= 0.0001 and p= 0.0039). During CI, the increase in anti-Hwp1 paralleled the increase in anti-gliadin antibodies. Microchip analysis showed that CeD patients were more reactive against some Hwp1 peptides than CI patients, and that some deamidated peptides were more reactive than their native analogs. Binding of IgG from CeD patients to Hwp1 peptides was inhibited by gamma III gliadin peptides. Conclusions Humoral cross-reactivity between Hwp1 and gliadin was observed during CeD and CI. Increased reactivity to Hwp1 deamidated peptide suggests that transglutaminase is involved in this interplay. These results support the hypothesis that CI may trigger CeD onset in genetically-susceptible individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genome wide association studies (GWAS) have identified several low-penetrance susceptibility alleles in chronic lymphocytic leukemia (CLL). Nevertheless, these studies scarcely study regions that are implicated in non-coding molecules such as microRNAs (miRNAs). Abnormalities in miRNAs, as altered expression patterns and mutations, have been described in CLL, suggesting their implication in the development of the disease. Genetic variations in miRNAs can affect levels of miRNA expression if present in pre-miRNAs and in miRNA biogenesis genes or alter miRNA function if present in both target mRNA and miRNA sequences. Therefore, the present study aimed to evaluate whether polymorphisms in pre-miRNAs, and/or miRNA processing genes contribute to predisposition for CLL. A total of 91 SNPs in 107 CLL patients and 350 cancer-free controls were successfully analyzed using TaqMan Open Array technology. We found nine statistically significant associations with CLL risk after FDR correction, seven in miRNA processing genes (rs3805500 and rs6877842 in DROSHA, rs1057035 in DICER1, rs17676986 in SND1, rs9611280 in TNRC6B, rs784567 in TRBP and rs11866002 in CNOT1) and two in pre-miRNAs (rs11614913 in miR196a2 and rs2114358 in miR1206). These findings suggest that polymorphisms in genes involved in miRNAs biogenesis pathway as well as in pre-miRNAs contribute to the risk of CLL. Large-scale studies are needed to validate the current findings.